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We numerically investigate the intriguing effects produced by random percolative disorder in two-
dimensional Josephson junction arrays. By dynamic scaling analysis, we evaluate critical temperatures and
critical exponents with high accuracy. It is observed that with the introduction of site-diluted disorder, the
Kosterlitz-Thouless phase transition is eliminated and evolves into a continuous transition with power-law
divergent correlation length. Moreover, genuine depinning transition and creep motion are studied; evidence
for distinct creep motion types is provided. Our results not only are in good agreement with the recent
experimental findings but also shed some light on the relevant phase transitions.
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I. INTRODUCTION

Understanding the critical behavior of Josephson junction
arrays �JJAs� with various disorders is always a challenging
issue and has been intensely studied in recent years.1–10

However, the properties of different phases and various
phase transitions are not well understood. Josephson junction
arrays give an excellent realization to both two-dimensional
�2D� XY model and granular high-Tc superconductors.11 As
we know, the pure JJAs undergo the celebrated Kosterlitz-
Thouless �KT� phase transition from the superconducting
state to the normal one; this transition is driven by the un-
binding of thermally activated topological defects.12 When
the disorder is introduced, the interplays among the repulsive
vortex-vortex interaction, the periodic pinning potential
caused by the discreteness of the arrays, and the defects pro-
duced by the disorder provide a rich physical picture.

In site-diluted JJAs, the crosses around the randomly se-
lected sites are removed from the square lattice. Since it is a
representative model for realizing the irregular JJAs systems,
how the percolation influences the physical properties of
JJAs has attracted considerable attention.1–4,9 Harris et al.1

introduced random percolative disorder into Nb-Au-Nb
proximity-coupled junctions, the current-voltage �I-V� char-
acteristics were measured, and the results demonstrated that
the only difference of the phase transition compared with
that in ideal JJAs system is the decrease in critical tempera-
ture, while the transition type still belongs to the KT one
with the disorder strength spanning from p=0.7 to p=1.0
�here 1− p is the fraction of diluted sites�. However, in a
recent experiment, Yun et al.9 showed that the phase transi-
tion changes into a non-KT-type one when the disorder
strength increases to a moderate value �p=0.86�. Therefore,
the existence of the KT-type phase transition in site-diluted
JJAs remains a topic of controversy; the nature of these
phase transitions and the various phases is not clear.

On the other hand, much effort has been devoted to the
zero-temperature depinning transition �ZTDT� and the re-
lated low-temperature creep motion �LTCM� both
theoretically13–15 and numerically16–18 in a large variety of
physical problems, such as charge-density waves,13 random-

field Ising model,16 and flux lines in type-II
superconductors.17,18 Since the nonlinear dynamic response
is a striking problem, there is increasing interest in its prop-
erties and characteristics, especially in the flux lines of
type-II superconductors.17,18 In a recent numerical study on
the three-dimensional glass states of flux lines, Arrhenius
creep motion was observed at a strong collective pinning,
while the non-Arrhenius creep motion was demonstrated at a
weak collective pinning.17

In this work, we numerically study the finite-temperature
phase transition �FTPT� in site-diluted JJAs at different per-
colative disorder strengths, the ZTDT and the LTCM are also
investigated. The outline of this paper is as follows. Section
II describes the model and the numerical method briefly. In
Sec. III, we present the main results, where some discussions
are also made. Section IV gives a short summary of the main
conclusions.

II. MODEL AND SIMULATION METHOD

JJAs can be described by the 2D XY model on a simple
square lattice; the Hamiltonian reads19,20

H = − �
�i,j�

Jij cos��i − � j − Aij� , �1�

where the sum is over all the nearest-neighboring pairs on a
2D square lattice, Jij denotes the strength of Josephson cou-
pling between site i and site j, �i specifies the phase of the
superconducting order parameter on site i, Aij
= �2� /�0��A ·dl is the integral of magnetic vector potential
from site i to site j, and �0 denotes the flux quantum. The
direct sum of Aij around an elementary plaquette is 2�f , with
f as the magnetic flux penetrating each plaquette produced
by the uniformly applied field, which is measured in units of
�0. f =0 and f =2 /5 are the focuses of this paper. The system
sizes are selected as 128�128 for f =0 and 100�100 for f
=2 /5, where the finite-size effects are negligible. We intro-
duce the site-diluted disorder similar to the previous
experiments.1,9 We first select the diluted sites randomly with
the probability 1− p, then remove the nearest four bonds
around the selected sites from the lattice. The distributions of
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the diluted sites are the same for all the samples considered.
The percolative threshold concentration pc is about 0.592.21

The resistivity-shunted-junction �RSJ� dynamics is incor-
porated in the simulations, which can be described as20,22

��

2e
�

j

��̇i − �̇ j� = −
�H

��i
+ Jex,i − �

j

�ij , �2�

where � is the normal conductivity, Jex,i refers to the external
current, �ij denotes the thermal noise current with ��ij�t��
=0, and ��ij�t��ij�t���=2�kBT	�t− t��.

The fluctuating twist boundary condition is applied in the
xy plane to maintain the current; thus the new phase angle

i=�i+ri ·� ��= ��x ,�y� is the twist variable� is periodic in
each direction. In this way, supercurrent between site i and
site j is given by Ji→j

s =Jij sin�
i−
 j −Aij −rij ·��, and the dy-
namics of �� can be written as

�̇� =
1

L2 �
�i,j��

�Ji→j + �ij� − I�, �3�

where � denotes the x or y direction and the voltage drop in

� direction is V=−L�̇�. For convenience, units are taken as
2e=�=J0=�=kB=1 in the following. The above equations
can be solved efficiently by a pseudospectral algorithm due
to the periodicity of phase in all directions. The time step-
ping is done using a second-order Runge-Kutta scheme with
�t=0.05. Our runs are typically �4–8��107 time steps and
the latter half time steps are for the measurements. The de-

tailed procedure in the simulations was described in Refs. 20
and 22. In this work, a uniform external current I along the x
direction is fed into the system.

Since RSJ simulations with direct numerical integrations
of stochastic equations of motion are very time consuming, it
is practically difficult to perform any serious disorder aver-
aging in the present rather large systems. Our results are
based on one realization of disorder. For these very large
samples, a good self-averaging effect is expected to exist,
which is confirmed by two additional simulations with dif-
ferent realizations of disorder. This point is also supported by
a recent study of JJAs by Um et al.8 In addition, simulations
with different initial states are performed and the results are
nearly the same. Actually, the hysteretic phenomenon is usu-
ally negligible in previous RSJ dynamical simulations on
JJAs.7,8 For these reasons, the results from simulations with a
unique initial state �random phases in this work� are accurate
and convincing.

III. RESULTS AND DISCUSSIONS

A. Finite-temperature phase transition

The I-V characteristics are measured at different disorder
strengths and temperatures. At each temperature, we try to
probe the system at a current as low as possible. To check the
method used in this work, we investigate the I-V character-
istics for f =0 and p=1.0. As shown in Fig. 1�a�, the slope of
the I-V curve in log-log plot at the transition temperature
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FIG. 1. I-V characteristics for different frustrations and disorder strengths. The dashed lines are drawn to show where the phase transition
occurs, the slopes of which are equal to z+1, and z is the dynamic exponent. The transition temperature and dynamic exponent for �a� are
well consistent with the well-known result, i.e., Tc=0.894, z=2.0, for �b�–�d� they are well consistent with those determined by FFH dynamic
scaling analysis. Solid lines are just guide for the eyes.
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Tc�	0.894� is equal to 3, demonstrating that the I-V index
jumps from 3 to 1, consistent with the well-known fact that
the pure JJAs experience a KT-type phase transition at Tc
	0.894. Figures 1�b� and 1�c� show the I-V traces at differ-
ent disorder strengths in unfrustrated JJAs, while Fig. 1�d� is
for f =2 /5 and p=0.65. It is clear that at lower temperatures,
R=V / I tends to zero as the current decreases, which follows
that there is a true superconducting phase with zero linear
resistivity.

It is crucial to use a powerful scaling method to analyze
the I-V characteristics. In this paper, we adopt the Fisher-
Fisher-Huse �FFH� dynamic scaling method, which provides
an excellent approach to analyze the superconducting phase
transition.23 If the properly scaled I-V curves collapse onto
two scaling curves above and below the transition tempera-
ture, a continuous superconducting phase transition is en-
sured. Such a method is widely used;6,24 the scaling form of
which in 2D is

V = I
−z���I
� , �4�

where �+�−��x� is the scaling function above �below� Tc, z is
the dynamic exponent, 
 is the correlation length, and V

 Iz+1 at T=Tc.

Assuming that the transition is continuous and character-
ized by the divergence of the characteristic length 

�T
−Tc�−� and time scale t

z, FFH dynamic scaling takes the
following form:

�V/I��T − Tc�−z� = ���I�T − Tc�−�� . �5�

On the other hand, to certify a KT-type phase transition in
JJAs, a new scaling form25 is proposed as follows:

�I/T��I/V�1/z = P��I
/T� , �6�

which can be derived directly from Eq. �4� after some simple
algebra. The correlation length of KT-type phase transition
above Tc is well defined as 

e�c / �T − Tc��1/2

and Eq. �6� is
rewritten as

�I/T��I/V�1/z = P+�Ie�c/�T − Tc��1/2
/T� . �7�

We perform the dynamic scaling analysis at a strong dis-
order �p=0.65� in unfrustrated system �f =0�. Using Tc
=0.24�0.01, z=1.2�0.02, and �=1.0�0.02, an excellent
collapse is achieved according to Eq. �5�, which is shown in
Fig. 2. In addition, all the low-temperature I-V curves can be
fitted to V
 I exp�−�� / I��� with �=0.9–1.1. These results
certify a continuous superconducting phase with long-range
phase coherence. The critical temperature for such a strongly
disordered system is very close to that in 2D gauge glass
model �Tc=0.22�.26

For f =0 and p=0.86, we first still adopt the scaling form
in Eq. �5� to investigate the I-V characteristics. As displayed
in Fig. 3, we get a good collapse for T�Tc with Tc
=0.58�0.01, z=2.0�0.01, and �=1.4�0.02, demonstrat-
ing a superconducting phase with power-law divergent cor-
relation for T�Tc. Note that the collapse is poor for T�Tc,
implying that the phase transition is not a completely non-
KT-type one. Next, we use the scaling form in Eq. �7� to
analyze the I-V data above Tc. Interestingly, using Tc=0.58

and z=2.0 as determined above, a good collapse for T�Tc is
achieved, which is shown in Fig. 4. That is to say, the I-V
characteristics at T�Tc are similar to those of a continuous
phase transition with power-law divergent correlation length
while at T�Tc they are similar to those of KT-type phase
transition, which are well consistent with the recent experi-
mental observations.9

To make a comprehensive comparison with the experi-
mental findings in Ref. 9, we also investigate the FTPT in
frustrated JJAs �f =2 /5� at a strong site-diluted disorder �p
=0.65�. As shown in Fig. 5, a superconducting phase transi-
tion with power-law divergent correlation is clearly ob-
served.

As is well known, non-KT-type phase transition in frus-
trated systems is a natural result. However, it is intriguing to
see that in unfrustrated systems, one may ask what our re-
sults really imply and what is the mechanism. It has been
revealed that in the presence of a strong random pinning
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FIG. 2. Dynamic scaling of the I-V data at various temperatures
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which is produced by random site dilutions, a breaking of
ergodicity due to large energy barrier against vortex motion
may allow enough vortices to experience a non-KT-type con-
tinuous transition.27

Interestingly, we recover the phenomena in experiments
by the present model and give some insights into the FTPT.
More information on the low-temperature phase calls for fur-
ther equilibrium Monte Carlo simulations as in Ref. 28.
Table I summarizes the critical temperatures at different frus-
trations and disorder strengths. One can find that the critical
temperature in unfrustrated system decreases with increasing
number of diluted sites.

The systems considered in our work are site-diluted JJAs,
which are not the same as the bond-diluted JJAs in Refs. 3
and 4. In bond-diluted systems the diluted bonds are ran-
domly removed, while in the site-diluted systems, the diluted
sites are randomly selected, then the nearest four bonds
around the selected sites are removed. Although the JJAs in

Refs. 3 and 4 and the present work are diluted in different
ways, it is interesting to note that the obtained exponents in
FTPT are very close, possibly due to the similar disorder
effect produced.

B. Depinning transition and creep motion

Next, we turn to the ZTDT and the LTCM for the typical
site-diluted JJA systems mentioned above. Depinning can be
described as a critical phenomenon with scaling law V
�I
− Ic��, demonstrating a transition from a pinned state below
critical driving force Ic to a sliding state above Ic. The �I
− Ic� vs V traces at T=0 for f =0 and p=0.86, f =0 and p
=0.65, and f =2 /5 and p=0.65 are displayed in Fig. 6; linear
fittings of log�I− Ic� vs log V curves are also shown as solid
lines. As for f =0 and p=0.86, the depinning exponent � is
determined to be 2.62�0.1 and the critical current Ic is
0.302�0.005, while for the cases f =0 and p=0.65 and f
=2 /5 and p=0.65, the depinning exponents are evaluated to
be 2.37�0.1 and 2.27�0.05 with the critical currents Ic
=0.039�0.001 and Ic=0.035�0.002, respectively.

When the temperature increases slightly, creep motions
can be observed. In the low-temperature regime, the I-V
traces are rounded near the zero-temperature critical current
due to thermal fluctuations. Fisher29 first suggested to map
such a phenomenon for the ferromagnet in magnetic field
where the second-order phase transition occurs. This map-
ping was then extended to the random-field Ising model16

and the flux lines in type-II superconductors.17 For the flux
lines in type-II superconductors, if the voltage is identified as
the order parameter, the current and the temperature are
taken as the inverse temperature and the field, respectively,
analogous to the second-order phase transition in the ferro-
magnet, the voltage, and current, and the temperature will
satisfy the following scaling ansatz:17,26

V�T,I� = T1/	S��1 − Ic/I�T−1/�	� , �8�

where S�x� is a scaling function. The relation V�T , I= Ic�
=S�0�T1/	 can be easily derived at I= Ic, by which the critical
current Ic and the critical exponent 	 can be determined
through the linear fitting of the log T-log V curve at Ic.

The log T-log V curves are plotted in Fig. 7�a� for f =0
and p=0.86. We can observe that the critical current is be-
tween 0.3 and 0.32. In order to locate the critical current
precisely, we calculate other values of voltage at current
within �0.3,0.32� with a current step of 0.01 by quadratic
interpolation.26 Deviation of the T-V curves from the power
law is calculated as the square deviations �SD�=��V�T�
−y�T��2 between the temperature range we calculated; here
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FIG. 5. Dynamic scaling of the I-V data at various temperatures
according to Eq. �5� for f =2 /5 and p=0.65.

TABLE I. Summary of Tc.

p f =0 f =2 /5

0.95 0.85�2� 0.16�2�
0.86 0.58�1� 0.13�1�
0.7 0.27�2� 0.12�1�
0.65 0.24�1� 0.14�1�
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the functions y�T�=C1T−C2 are obtained by linear fitting of
the log T-log V curves. The current at which the SD is mini-
mum is defined as the critical current. The critical current is
then determined to be 0.302�0.001. Simultaneously, we ob-
tain the exponent 1 /	=1.688�0.001 from the slope of
log T-log V curve at Ic=0.302. The similar method is applied
to investigate the cases f =0 and p=0.65 and f =2 /5 and p
=0.65. As shown in Figs. 7�b� and 7�c�, the critical current Ic
and critical exponent 1 /	 for f =0 and p=0.65 are deter-
mined to be 0.038 75�0.0005 and 2.24�0.02, respectively,
for f =2 /5 and p=0.65, the result is Ic=0.034�0.001 and
1 /	=2.29�0.01.

We then draw the scaling plots according to Eq. �8�. By
one-parameter tuning �only ��, we get the best collapses of
data in the regime I� Ic with �=2.61�0.02 and 2.28�0.02
for f =0 and p=0.86 and f =0 and p=0.65, respectively,
which are shown in Figs. 8�a� and 8�b�. For f =0 and p
=0.86, this curve can be fitted by S�x�=0.0994 exp�1.9x�,
combined with the relation �	=1.55, suggesting a non-
Arrhenius creep motion. However, for the strongly site-
diluted system with f =0 and p=0.65, the scaling curve can
be fitted by S�x�=0.037 exp�0.5x�, combined with the rela-
tion �		1.0, indicative of an Arrhenius creep motion. Inter-
estingly, as displayed in Fig. 8�c� for f =2 /5 and p=0.65, the
exponent � is found to be 2.30�0.02, which yields �	
	1.0. The scaling curve in the regime I� Ic can be fitted by
S�x�=0.105 exp�0.25x�. These two combined facts suggest
an Arrhenius creep motion in this case.

FIG. 6. �a� IV characteristics for f =0 and p=0.86 with Ic

=0.302�0.005 and �=2.62�0.1. �b� IV characteristics for f =0
and p=0.65 with Ic=0.039�0.001 and �=2.37�0.1. �c� IV char-
acteristics for f =2 /5 and p=0.65 with Ic=0.035�0.002 and �
=2.27�0.05.

FIG. 7. �a� log T-log V curves for f =0 and p=0.86 around Ic

with Ic=0.302�0.001 and 1 /	=1.688�0.001. �b� log T-log V
curves for f =0 and p=0.65 around Ic with Ic=0.03875�0.0005
and 1 /	=2.24�0.02. �c� log T-log V curves for f =2 /5 and p
=0.65 around Ic with Ic=0.034�0.001 and 1 /	=2.29�0.01.
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It is worthwhile to note that both the FTPT and the LTCM
for strongly disordered JJAs �p=0.65� with and without frus-
tration are very similar. The I-V curves in low temperature
for all three cases can be described by V�T1/	 exp�A�1
− Ic / I� /T�	�; this is one of the main characteristics of glass
phases,17,26 while the I-V traces for KT-type phases can be
fitted to V� Ia. Hence, by the scaling Ansätze in Eq. �8�, we
have provided another evidence for the existence of non-KT-
type phases in the low-temperature regime for these three
cases �f =0, p=0.86; f =0, p=0.65; f =2 /5, p=0.65�.

IV. SUMMARY

To explore the properties of various critical phenomena in
site-diluted JJAs, we performed large-scale simulations for
two typical percolative strengths p=0.86 and p=0.65 as in a
recent experimental work.9 We investigated the FTPT, the
ZTDT, and the LTCM in these systems. The RSJ dynamics
was applied in our work, from which we measured the I-V
characteristics at different temperatures.

The results obtained in this work about FTPT are well
consistent with the recent experimental findings in Ref. 9 and
are inconsistent with the earlier experimental study in Ref. 1,
possibly due to the large noise in the measurement of voltage
in Ref. 1 �larger than 0.2 nV�, which was considerably re-
duced in the experiments by Yun et al.9 The evidence for
non-KT-type phase transition was revealed by two different
scaling Ansätze �Eqs. �5� and �8��. Our results also shed
some light on the various phases and the phase transitions
where the different divergent correlations at various disorder
strengths were suggested, and the critical exponents were
evaluated. Furthermore, the results in this paper are useful
for understanding not only the site-diluted systems but also
the whole class of disordered JJAs; for instance, the combi-
nation of two different phase transitions may exist in other
disordered JJAs systems.

In addition, the ZTDT and the LTCM were also touched.
It was demonstrated by the scaling analysis that the creep
law for f =0 and p=0.86 is a non-Arrhenius type while those
for f =0 and p=0.65 and f =2 /5 and p=0.65 belong to the
Arrhenius type. It is interesting to note that the non-
Arrhenius type creep law for f =0 and p=0.86 is similar to
that in three-dimensional flux lines with a weak collective
pinning.17 The product of the two exponents, 1.55, is also
very close to 3/2 determined in Ref. 17. For f =0 and p
=0.65 and f =2 /5 and p=0.65, the observed Arrhenius type
creep law is also similar to that in the glass states of flux
lines with a strong collective pinning as in Ref. 17. Future
experimental work is needed to clarify this observation.
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